What can we say from the death of layer chickens? Estimating within-flock HPAI (H5N2) dynamics using an Approximate Bayesian Computation framework

Introduction

- In early 2015, outbreaks of H5N2 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) were detected in commercial poultry in the upper Midwestern states of the United States. The unprecedented scope of the outbreak highlighted gaps in the epidemiological understanding of this novel HPAI in commercial flocks.
- It was unclear how the complex population structure present in caged layer operations may affect the spread of the virus within barns.
- **Objective**: To infer the epidemiological characteristics of how H5N2 clade 2.3.4.4 HPAI virus spread within table egg layer operations during the 2015 Iowa outbreak.

Method

- We fitted a stochastic, individual-based, Susceptible-Infectious-Recovered (SIR) within-flock model over the observed daily incident mortalities of caged layers for six H5N2-infected table egg layer operations in Iowa (Fig 3A).
- The flock size of the selected barns ranged from 62,000 to 308,800 birds, with a median of 104,500 birds. In each barn, the population structure was considered based on a double-sided multiple-tier cage system, with rows of 209 to 244 cages and 5 to 9 birds per cage. Number of cages in rows and number of birds in cages depended on the total population size and kept consistent stock density around 20,000 birds per block (Fig 1B).
- Transmission is through direct (i.e. between birds of the same cage or of contiguous cages) and indirect (homogeneous mixing process) contacts (Fig 1C). Probability M_i of infection for susceptible birds in cage i is:

$$M_i = 1 - \exp\left\{ \beta_i \frac{y_i}{N_i} + \beta_i \sum_{j \neq i} \frac{\rho_{i,j} y_j}{N_j} + \beta_b \frac{1}{N_{ctot}} \sum_{j \neq i} y_j \right\} \Delta t,$$

where y_i and y_j number of infected birds in cage i and j ($i \neq j$); N_i and N_{ctot} number of birds in cage i and in the whole barn; $\rho_{i,j}$ contiguity between cages.
- The infectious period was assumed following an Erlang distribution of mean $1/\mu_i$ and shape k_{inf}. A constant mortality rate γ_{ch} was introduced to account for management practices.
- Parameter Inference using Approximate Bayesian Computation employing sequential Monte Carlo (ABC-SMC) algorithm (L2).
- Model was fitted over each longitudinal mortality record independently or together, selecting particles based on the R^2 coefficient between observations and predictions.

Key findings

- Taken together, posterior median estimates of direct (β_i) and indirect ($\beta_{i,j}$) transmission rates were 11.4 (95% Cr. l. 4.8 to 18.3) and 6.8 (95% Cr. l. 2.1 to 9.6) per infectious chicken per day, respectively (Fig 2A-B).
- The spread of H5N2 in table egg layer operations was characterised by a long median infectious period $1/\mu_i = 13.9$ days (95% Cr. l. 8.6 to 17.5 days, Fig 2C).
- The model estimates that approximately 10-16 days would elapse between a virus introduction and detection of clinical signs (Fig 2D).

Conclusion

- The median estimates of infectious period for H5N2 clade 2.3.4.4 was greater than what was reported for other subtypes, suggesting that this H5N2 virus was not well adapted to chickens upon initial introduction to layer flocks.
- Although these estimates are based on a small number of operations, inferences highlight the importance of indirect/fomite transmission.

References

Acknowledgements

The work was funded by cooperative agreement APHIS 16-0320-0471-CA, in collaboration with the Center for Epidemiology and Animal Health (USDA-APHIS-EH). We appreciate all of the producers who shared data to make this work possible and contribute to our understanding of disease spread.