Epic 3 Conference

Modelling to support disease outbreak management

Economics

alistair.stott@sruc.ac.uk
Typical Economic Model?

Predicted Losses from BTV8 Incursion into Scotland*

“It is not from the benevolence of the butcher, the brewer, or the baker that we expect our dinner, but from their regard to their self-love, and never talk to them of our own necessities but of their advantages.”

Adam Smith, 1776
Importance of this to Epic

Infected Nodes

Percentage of infected nodes

Time

MRP=Movement Restriction Policy

No MRP
MRP with anticipation
MRP no anticipation

Need to understand farmers*

*And other significant ‘actors’ of course – see Alyson Barrett’s presentation.
Management problem model

Dairy cow culling guide based on an optimal replacement decision model that maximises the £NPV of heifers in perpetuity.
Mean Inefficiencies in French Specialist Dairy Farming Businesses

<table>
<thead>
<tr>
<th></th>
<th>CSS</th>
<th>OSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental impacts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-renewable energy</td>
<td>0.066</td>
<td>0.060</td>
</tr>
<tr>
<td>Land use</td>
<td>0.100</td>
<td>0.041</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>0.107</td>
<td>0.141</td>
</tr>
<tr>
<td>Acidification</td>
<td>0.090</td>
<td>0.053</td>
</tr>
<tr>
<td>GWP</td>
<td>0.060</td>
<td>0.069</td>
</tr>
<tr>
<td>Mean</td>
<td>0.085</td>
<td>0.073</td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crops</td>
<td>0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>Milk</td>
<td>0.033</td>
<td>0.019</td>
</tr>
<tr>
<td>Meat</td>
<td>0.040</td>
<td>0.022</td>
</tr>
<tr>
<td>Mean</td>
<td>0.025</td>
<td>0.016</td>
</tr>
</tbody>
</table>

CSS = continental specialized systems; OSS = oceanic specialized systems; GWP = global warming potential.

Data capture

Smart Sensors at Kirkton Farm – SRUC Hill & Mountain Research Centre

Internet of ‘Ewe’ things?
Conclusions

• Interdisciplinary epi-economic models are insightful
• Their value is not always fully understood
• There is therefore opportunity for future developments
• Technology and data capture should help
Acknowledgements

• Resas funding via EPIC and SRP
• EPIC colleagues
• Staff at SRUC Hill and Mountain Research Centre
Leading the way in Agriculture and Rural Research, Education and Consulting
Data capture & Communication
A few seconds of accelerometer data OR a whole month/year?
Data Capture and Communication

- New (cheap) sensors – field-based, animal-based
- Reduced power needs (software improvement and hardware size/weight reduction)
- Improved (and cheap) communication (IoT technology)
- Associated platforms (such as mapping technologies for smartphones)
- Hardware size, costs and fitness for purpose improving dramatically through parallel developments e.g. batteries for human wearables and nearables will benefit animal wearables
- Move from data-logging (good for science and to document) to real-time monitoring (good for science, but becomes fit for active management)